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A multiblock unstructured grid approach is pres- 
ented for solving three-dimensional incompressible in- 
viscid and viscous turbulent flows about complete con- 
figurations. The artificial compressibility form of the 
governing equations is solved by a node-based, finite 
volume implicit scheme which uses a backward Euler 
time discretization. Point Gauss-Seidel relaxations are 
used to solve the linear system of equations at each time 
step. This work employs a multiblock strategy to the 
solution procedure, which greatly improves the et% 
ciency of the algorithm by significantly reducing the 
memory requirements by a factor of 5 over the single 
grid algorithm while maintaining a similar convergence 
behavior. The numerical accuracy of solutions is as- 
sessed by comparing with the experimental data for a 
submarine with stem appendages and a high-lift config- 
uration. 

Introductim 

Unstructured grid technology offers several advan- 
tages for applications to computational field simulation 
(CFS). The geometric flexibility inherent in the ap- 
proach makes it ideally suited for CFS applications with 
complex geometries and readily supports solution- 
adaptation methods, which can be essential for accurate 
simulations of complex flows with a minimal number of 
mesh points. In addition, unstructured grid generation 
is far more automatable than are the tasks associated 
with multiblock structured grid generation, resulting in 
considerable savings in the overall time required to per- 
form simulations involving complex geometries. The 
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primary disadvantage associated with the use of un- 
structured meshes is the inherent inefficiency of an un- 
structured solver. This inefficiency is caused by the 
need to explicitly store the data structure, and the fact 
that for tetrahedral meshes, many edges are coincident 
to each node. For implicit schemes, the problem is 
worsened because flux Jacobian matrices need to be 
stored for every edge in the mesh which is equivalent to 
storing the off-diagonal elements for a first-order linea- 
rization of the residual. The result is that the memory 
required for implicit schemes can be a limiting factor for 
performing large-scale turbulent flow computations on 
unstructured meshes. 

The objective of this research is to develop an effi- 
cient, implicit, unstructured flow solver for computing 
three-dimensional, incompressible, high Reynolds 
number viscous flows about complete configurations, 
such as fully appended submarines. The primary focus 
is to reduce the memory required for viscous flow simu- 
lations by using an effective multiblock strategy. Here, 
the domain is divided into distinct blocks similar to the 
procedure often used for parallel computations. The 
solution is advanced from one time-step to the next by 
sequentially updating the solution in each block, where 
the Jacobians and metric quantities are computed only 
within each block. This technique has been previously 
demonstrated in Ref. [l] for two-dimensional computa- 
tions and is extended to three-dimensions in the present 
work. 

The basic solution algorithm is that of Anderson, 
Rausch, and Bonhaus, which utilizes the artificial com- 
pressibility form of the incompressible Navier-Stokes 
equations and is referred to as FlJN3D [2]. A Spa& 
and Allmaras one-equation turbulence model [3] is 
used for simulating the effects of turbulence. The dis- 
cretized scheme uses a node-based, finite volume 
scheme where the inviscid fluxes are evaluated using a 
second-order Roe scheme with a least squares proce- 
dure for data reconstruction, while the viscous fluxes are 
evaluated with a finite-volume formulation that is 
equivalent to a Galerkin type of approximation. The 
time advancement algorithm is based on the linearized 
backward Euler time-difference scheme, which yields 
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a linear system of equations for the solution at each time 
step. The GaussSeidel procedure is used to solve the 
linear system of equations at each time step. 

This paper is organized as follows. The artificial 
compressibility form of the three-dimensional Re- 
ynolds-averaged Navier-Stokes equations is first out- 
lined, followed by the numerical procedures used in the 
current code. The multiblock algorithm is introduced 
next, which includes grid decomposition, data structure 
for the multiblock algorithm, and boundary treatment at 
block interfaces. Solutions of inviscid and viscous tur- 
bulent flows about appended submarines, and a turbu- 
lent flow about a high-lift configuration (Energy Effr- 
cient Transport), are presented to demonstrate the 
efficiency and accuracy of the current multiblock solv- 
er. Some conclusions are summarized in the last sec- 
tion. 

Eeuationq Governing 

The unsteady three-dimensional incompressible 
Reynolds-averaged Navier-Stokes equations without 
body forces are written in Cartesian coordinates and in 
conservative form. A pseudo-time derivative of pres- 
sure is added to the continuity equation. The resulting 
set of equations in integral form represents a system of 
conservation laws for a control volume that relates the 
rate of change of a vector of average state variables 4 to 
the flux through the volume surface, which can be writ- 
ten as 

where i is the outward-pointing unit normal to the con- 
trol volume V The vector of dependent state variables 
q and the inviscid and viscous fluxes normal to the con- 
trol volume fi and fV are given as 

fi.r; = 

P 
I= ; 

H W 

where B is the artificial compressibility parameter; U, V, 
and w are the Cartesian velocity components in the x, y, 
and t directions, respectively; 0 is the velocity normal 
to the surface of the control volume, where 

O=n,u +n,v +n,w 

and p is the pressure. Note that the variables in the pre- 
ceding equations are nondimensionalized with the char- 
acteristic length, freestream values of velocity, density, 
and viscosity. Pressure is normalized using the follow- 
ing relationship (p - p-)/pm v’, , where the subscript 
denotes a freestream or reference value. The shear 
stresses in Eq. (1) are given as 

7, = z, = @ + PI) &(uz + w3 

=,z = 7, 
1 

= @ + PI> &vz + WY> 

where ,D and ,D, are the laminar and turbulent viscosities, 
respectively, and Re is the Reynolds number. 

Solution AAgmithw 

The baseline flow solver is a node-based, finite vol- 
ume implicit scheme based on unstructured meshes with 
tetrahedral elements. The computational domain is di- 
vided into a finite number of tetrahedral elements from 
which control volumes are formed that surround each 
vertex in the mesh. The flow variables are stored at the 
vertices of the element. Equation (1) is then numerical- 
ly integrated over the closed boundaries of the control 
volumes surrounding each node. These control volumes 
are formed by connecting the dual faces of the edges, as 
shown in Figure 1. These nonoverlapping control vol- 
umes combine to completely cover the domain and are 
considered to form a mesh which is dual to the mesh 
composed of tetrahedral elements formed from the ver- 
tices. 

Numerical Flux Evaluation ~-- 

The numerical evaluation of the surface integrals 
in Eq. (1) is conducted separately for the inviscid and 
viscous contributions, and is evaluated on the dual face 
of each edge (an edge-based approach). The inviscid 
fluxes are obtained on the faces of each control volume 
with a second-order Roe scheme, while the viscous 
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- mesh 
-- median dual 

Figure 1. Control volume surrounding a node 

terms are evaluated with a finite-volume formulation 
that is equivalent to a Gale&in type of approximation 
[2]. The inviscid fluxes on the boundaries of the control 
volumes are given by 

@ = $ <fi(4+ir;) + fj(q-;i)) 

- +l‘m?+ - 4-j (2) 

where @ is the numerical flux, andfi: is the flux vector 
given in Eq. (1). A nonsingular eigensystem for the ma- 
trix fil in two-dimensional problems was reported in 
Ref. [2]. Quantities q- and q+ are the values of the de- 
pendent variables on the left and right side of the bound- 
ary of the control volume. For first-order accurate dif- 
ferencing, quantities q- and q+ are set equal to the data 
at the nodes lying on either side of the cell face. For 
higher-order differencing, these values are computed 
with a Taylor series expansion about the central node of 
the control volume 

4 fact = 4 node + vq . r (3) 

where r is the vector that extends from the central node 
to the midpoint of each edge, and Vq is the gradient of 
the dependent variables at the node and is evaluated 
with a least-squares procedure [2]. 

The viscous flux contribution to the residual is ob- 
tained using a finite-volume approach. In this ap- 
proach, quantities such as velocity derivatives are first 
evaluated in each tetrahedral element of the mesh and 
the viscosity is computed as an average of the four nodes 
making up the tetrahedron. 

&ue Advane 

The time-advancement algorithm is based on the 
linearized backward Euler time-differencing scheme, 
which yields a linear system of equations for the solu- 
tion at each time step 

[Al” Idql” = - (r}” (4) 

where (T)” is the vector of steady-state residuals, {dq}” 
represents the change in the dependent variables, and 
the solution matrix [A]n is written as 

The solution of this system of equations is obtained 
by a relaxation scheme in which (dq}” is obtained 
through a sequence of iterations, (4q}i, which converge 
to {dq}n. There are several variations of classic relax- 
ation procedures which have been used in the past for 
solving this linear system of equations [4][5]. In this 
work, a point implicit Gauss-Seidel procedure as de- 
scribed in Ref. [23 is used. To clarify the scheme, [AA]” 
is first written as a linear combination of two matrices 
representing the diagonal and off-diagonal terms 

[A]” = [D]” + [O]” (6) 

and the solution to the linear system of equations is ob- 
tained by adopting a Gauss-Seidel type of strategy in 
which all odd-numbered nodes are updated first, fol- 
lowed by the solution of the even-numbered nodes. 
This procedure can be represented as 

[D]” {dg}‘+’ = [ - {r}” - [O] (Llq)(‘+‘)” 1 (7) 

where (dq}(i+l)fi is the most recent value of dq, which 
will be at subiteration level i+l for the odd-numbered 
nodes that have been previously updated and at level i 
for the even-numbered nodes. Normally 15-20 subit- 
erations are adequate at each time step. 

e Mow 

For the current study, the one-equation turbulence 
model of Spalart and Allmaras is used [3]. The model 
can be implemented in a straightforward manner be- 
cause there is no need to define an algebraic length 
scale. The simple model [3] showed reasonably good 
prediction for most airfoil flows [1][2]. However, for 
the current submarine applications, it was found that the 
prediction of the axial force acting on the submarine was 
less than satisfactory. This is because the model over- 
predicts the level of eddy viscosity in the core of a vor- 
tex, which smears the vortex in the near field. This 
shortcoming can be worked around through modiftca- 
tion of the production term as suggested in Ref. [6]. The 
production term qlov of the model [3] is multiplied by 
the “rotation function”f,l 

fr,(r*, 3 = (1 + CA) *cl - cr3 tan - ‘(~23) 

- Crl (8) 

Here, r = e/ m, r’ E $&!&/Id. e is the scalar 
measure of rotation and curvature effects which is eval- 
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uated with a complex expression (see Ref. [6]), Ju,r/, 

is the norm of the whole tensor, and m is the strain 
rate. The constants are c,l= 1, cr2= 12, cr3= 1, which are 
based on the wingtip calculations of Dacles-Mariani et 
al. [7] and on curved and rotating boundary layers. The 
current work uses a simplified formula suggested by 
Spalart [8], which sets Y = 0 in Eq. (8), and thus saves 
considerable effort in modifying the production term. 

In the solution process, the equation for turbulent 
viscosity is solved using a backward Euler time-step- 
ping scheme similar to that used for the flow variables, 
but separated from the flow equations. This results in 
a loosely coupled solution process that allows easy in- 
terchange with new turbulence models. 

Multiblock Aleorithm 

Grid Generation 

To generate a multiblock structured grid, the physi- 
cal domain is first divided into several subdomains with 
prescribed block boundaries; the grid in each block is 
then generated separately. To generate a multiblock un- 
structured grid, however, the preceding process does not 
apply because prescribed block boundaries will degrade 
the grid quality in these regions. The multiblock un- 
structured grid is generated through a grid decomposi- 
tion process. First, the computational grid of the entire 
physical domain is constructed within a single block us- 
ing the grid generation software AFLRLSolidMesh [9] 
developed at the Engineering Research Center. This 
grid generation tool is very efficient in generating high 
aspect-ratio viscous unstructured meshes. A readily 
available partitioning software METIS [lo] is then used 
to break the mesh into several sub-domains (or blocks) 
by selecting all the cells that fall into the region set for 
each subdomain. Each block contains the connectivity 
information required for that block, as well as the in- 
formation to connect block-teblock interfaces. 

Jvlultiblock St- 

The implementation of the multiblock algorithm on 
unstructured grids adopts a similar strategy as used in 
structured grids [ll] and in two-dimensional unstruc- 
tured work [ 11, i.e. a vertical mode in which a complete 
cycle is completed in each block before proceeding to 
the next block. The advantage of this approach is that 
the solution process (nonlinear and linear procedure) in 
each block is local and thus does not depend on the solu- 
tion in other blocks. This nature of independence of the 
solution to other blocks offers great flexibility in both 
implementation and memory allocation for the algo- 
rithm, and also provides a natural platform for parallel 
implementations. (In fact, the main difference between 

the multiblock algorithm and the parallel implementa- 
tion is that in the former, the solution in each block is 
performed sequentially in a prescribed order, while in 
the latter, all blocks are solved simultaneously). The 
disadvantage of the vertical mode is that the single block 
algorithm can never be recovered. Therefore if a grid 
has many blocks, the convergence rate could suffer be- 
cause of the explicit nature of the data interchange be- 
tween blocks. Since the main purpose of this work is to 
reduce the memory requirements of the unstructured 
grid algorithm, the memory allocation in the code must 
be done in a special way to achieve the best efficiency 
in both memory usage and CPU time. In the current 
work, all memory is allocated either locally or globally. 
For local memory, only the storage needed for the cur- 
rent block is allocated when the solution process enters 
that block, and this storage is freed at the time when the 
solution process leaves the block. The new storage is 
reallocated whenthe solution process moves to the next 
block. The local memory allocation is mainly for vari- 
ables which do not need to be stored for all blocks, such 
as the flux Jacobian matrix (most costly part in the 
memory usage) which is updated after each time step in 
each block. On the other hand, the global memory al- 
location means that storage is allocated for all blocks 
and is not freed until the solution process is complete. 
Some data such as flow variables, grid coordinates and 
the distance to the wall surfaces, must be stored in a 
global way for all blocks. Therefore, by adopting the 
above strategy for memory allocation, the memory re- 
quirements of the multiblock algorithm will be much 
less than that of the single block algorithm where all 
memory is allocated globally. 

Block Boundary Condition 

In the current multiblock solver, each block is sur- 
rounded by a set of phantom cells which connect to the 
block boundaries and lie in other blocks (Figure 2), sim- 
ilar to the previous work for two dimensional problems 
[ 11. One difference is that in the current work, the data 
in both interior cells and phantom cells are stored in the 
same arrays, similar to the data structure used for a cell- 
centered approach on multiblock structured grids [ 111. 
This allows the calculation of residuals at block inter- 
faces to be treated in the same way as the interior nodes 
in one step, instead of two steps as in the previous two- 
dimensional work [l]. The new data structure not only 
reduces the arrays needed for storing the information on 
phantom cells, but also keeps the modification to the 
original code to a minimum. 

Because the current multiblock solver employes a 
vertical mode, the phantom nodes can only be updated 
with the values obtained in the previous step from other 
blocks prior to each new iteration. This is the only time 
in the solution process when the information is ex- 
changed among blocks. Since the updating of gradients 
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phantom cell interior cell 

Figure 2. Interior cells and phantom cells for block 1 

at the phantom nodes occurs such that they are “lagged” 
by one time step, and the correction to the dependent 
flow variables in other blocks is neglected during the 
Gauss-Seidel subiterations, the nodes on block inter- 
faces can not be updated strictly at the correct point as 
done in the single-grid solver. However, the conver- 
gence behavior of the multiblock solver is not seriously 
degraded by explicitly updating phantom nodes, as 
shown in the subsequent section, 

Reslllb 

Figure 3. Twenty-block unstructured grid for ful- 
ly appended submarine configuration 

To validate the current multiblock unstructured 
solver for large-scale simulations about complete con- 
figurations, three test cases are presented which include 
an inviscid flow around the SUBOFF model with a sail 
and four stern appendages, a viscous turbulent flow 
about the SUBOFF bare hull with four stem append- 
ages, and a viscous turbulent flow about a high-lift con- 
figuration (Energy Efficient Transport). The computed 
force and moment coefficients for the SUBOFF bare 
hull with four stem appendages are compared with the 
solution obtained by a structured grid solver (UNCLE) 
[ 121 and experimental data [ 131. The computed Cp dis- 
tributions for the Energy Efficient Transport case are 
compared with experimental data [14]. All computa- 
tions were carried out on a single UltraSPARC 
333.6MHz processor with 2GB in-core memory and 
4MB data cache size. 

. . 
SUBOW with Sail 

The first case considers an inviscid flow around the 
SUBOFF model with a sail and four stern appendages. 
Figure 3 shows the unstructured grid for the SUBOFF 
configuration which is partitioned into 20 blocks; the 

Figure 4. Convergence histories for inviscid flow 
about fully appended submarine 

shadowed colors represent different blocks. This grid 
contains approximately 216K nodes and 1.2M tetrabe- 
dral elements. 

The Courant-Friedrichs-Lewy (CFL) number for 
the current computation has been linearly ramped from 
20 to 200 over 100 iterations. The effect of the blocking 
strategy on the convergence rate can be seen in Figure 4 
which shows the convergence histories for the multi- 
block and single+block solutions. When 10 Gauss-Sei- 
de1 subiterations are used at each time step to obtain an 
approximate solution of the linear system, it is seen that 
the multiblock scheme converges somewhat faster than 
the single-block scheme. This may be due to the fact 
that when a mesh is decomposed into smaller sized 
blocks, the error signals of each block are damped faster 
during the subiterations, which thus improves the con- 
vergence of the global solution in the entire domain. For 
20 subiterations, which is more typical for applications, 

5 



(c)l999 American Institute of Aeronautics & Astronautics 

the single-block scheme converges faster although the 
degradation due to the blocking is not significant. 
While the performance of the flow solver is not signifi- 
cantly effected by partitioning the mesh, the memory 
consummation is reduced by a factor of 5 compared to 
the single-block method. Similar benefits and perfor- 
mance were also obtained in the previous work on two- 
dimensional unstructured meshes [l] and three-dimen- 
sional structured multiblock grids [ 111. Although not 
shown, computations performed on the multiblock and 
single-block meshes show no difference in the con- 
verged solutions. 

SUBOFF with Stern Appenda= 

The second test case is for turbulent flows over the 
same SUBOFF bare hull with four stem appendages. 
The Reynolds number is 14 million based on the body 
length and freestream velocity. A number of grids, con- 
sisting of 250K to 1.14M nodes (1.4M to 6.8M ele- 
ments), has been used for grid convergence studies. The 
spacing of the first mesh point off the surface is 0.6~10” 
relative to the length of the submarine; this spacing 
yields a y+ value less than of 0.5 over the surface of the 
submarine. Figure 5 shows the surface grid in the region 
of the stern appendages for turbulent flow computa- 
tions. Figure 6 shows the convergence histories of mul- 
tiblock and single-block solutions on a mesh with 600K 
nodes and 3.5M elements. The convergence rate of the 
multiblock solution is close to that of the singleblock 
solution; however, the memory required by the multi- 
block solution is less than l/5 that of the single-block 
solution. It should be noted that the final solutions are 
independent of the blocking strategy. 

The present work also compares computed results 
with the structured grid solution from Ref. [ 121 and the 
experimental data from Ref. [13]. The experimental 
data available for the SUBOFF configuration is not 
symmetrical about the negative and positive angles of 
attack. One has to take this into account when viewing 
the comparison of computed results with the experimen- 
tal data. Figures 7-9 show computed axial force, lateral 
force, and pitching moment coefficients obtained on 
both structured and unstructured grids along with the ex- 
perimental data. The effect of varying the unstructured 
mesh size on the computed forces and moments is seen 
in the figures. It was found that in order to resolve the 
lateral force, the unstructured grid needs at least 850K 
nodes for this configuration. However, the prediction of 
the axial force was still not satisfactory, even though the 
grid size was increased. To remedy this problem, a mod- 
ifted Spalart and Allmaras turbulence model [6] is ex- 
amined. Figures IO-12 compare the effects of the origi- 
nal and modified models on grid with 850K nodes and 
at 0 and lO-deg angles of attack. The prediction of the 

Figure 5. Twenty-block unstructured grid with 1.14M 
nodes for SUBOFF with stern appendages 

Figure 6. Convergence histories for turbulent flow 
about SUBOFF with stern appendages 

force coefficients at moderate angles of attack (within 
lO-deg) is improved by using the modified model. 

Figures 13 and 14 show the convergence histories 
for the residual, forces and moments of the multiblock 
solution on the grid with 850K nodes at lO-deg angle of 
attack. The residual is reduced to the machine accuracy 
in 800 time steps, however, the force and moment coef- 
ficients are converged in just 500 time steps. The cur- 
rent multiblock solution required 600 MB in-core 
memory, and took 20 hours for every 100 time steps on 
the single processor mentioned before. This represents 
a memory savings of a factor of about 5 and no CPU time 
overhead over the single-block solution. 

JIiph-Lift Con- 

The last case is an example application for the com- 
putation over a high-lift configuration (Energy Effi- 
cient Transport). This is a fairly complex configuration 
with the slat, vane, and auxiliary flap attached to the 
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Figure 7. Comparison of axial force coefficient with 
different mesh sizes 

Figure 10. Comparison of axial force coefficient with 
simple and modified turbulence models 

0.015 , 

1 
to 0 

Figure 11. Comparison of lateral force coefficient with 
simple and modified turbulence models 

Figure 8. Comparison of lateral force coeffkient with 
different mesh sizes 

~- = 0.004 r 

Figure 9. Comparison of pitching moment coefficient 
with different mesh sizes 

Figure 12. Comparison of pitching moment coefficient 
with simple and modified turbulence models 
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Figure 13. Convergence history of total residual for Figure 15. High-lift configuration with 2 million 
SUBOFF body with four stern appendages nodes and 11 million elements 

Figure 14. Convergence history of forces and moment for 
SUBOFF body with four stern appendages 

main wing. The mesh for this configuration contains 
over 2 million nodes and 11 million elements for half of 
the physical space. The mesh is partitioned into 12 
blocks for the multiblock computation. Figure 15 
shows the configuration which has a symmetric plane at 
the center of the configuration. Figure 16 shows the sur- 
face grid in the wing region which indicates the com- 
plexity of the configuration. 

The flow conditions for this computation are a 
l@-deg angle of attack and a Reynolds number of about 
1.6 million based on the mean aerodynamic chord. The 
boundary conditions used in- the computation are the 
characteristic variable boundary condition on the far- 
field, no-slip condition on the solid wall surface, and a 
symmetric flow condition on the central plane of the 
configuration. The CFL number was linearly ramped 
from 1 to 100 over 100 iterations, and 10 subiterations 
of a symmetric Gauss-Seidel method were used to solve 
the linear system. Figures 17-20 show the computed Cp 

Figure 16. Surface grid in the wing region 

distributions on the slat, main, vane, and flap elements 
at an inner section of the wing (27.6% of the span loca- 
tion from the root of the wing). It is seen that the com- 
putation is in reasonably good agreement with the ex- 
perimental data [ 141. 

The convergence history of the multiblock solution 
for the configuration is shown in Figure 2 1. The residu- 
al is reduced by 4 orders of magnitude in 1500 time 
steps. The current multiblock solver requires about 1 
GB in-core memory for this configuration, using single 
precision definition for the flux Jacobian matrices. It 
should be pointed that there is no way to perform such 
a computation using the single-block solver, since the 
memory requirements are prohibitively high. However, 
the required CPU time for the multiblock solution is still 
very large, because of the size of the computational grid. 
Several procedures have been taking place at the Engi- 
neering Research Center to shorten the computational 
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Figure 17. Comparison of Cp distribution on 
the slat element 

Figure 18. Comparison of Cp distribution on 
the main element 

time. One is to use a mixed element method to reduce 
the number of mesh edges for the computations. Anoth- 
er procedure is to use the parallel algorithm to reduce the 
turnaround time since the present multiblock strategy 
readily supports the parallel implementations. 

A multiblock unstructured flow solver is presented 
to solve the three-dimensional incompressible Re- 
ynolds-averaged Navier-Stokes equations. The multi- 
block technique has been previously demonstrated in 
the two-dimensional work, and is now extended to 
three-dimensional problems. Results presented show 
that, by properly allocating the memory for the code, the 
multiblock solution may reduce the memory require- 
ments by a factor of 5 compared to the single-block 
method. Solutions about an appended submarine and a 

Figure 19. Comparison of Cp distribution on 
the vane element 

. 

-1.0 

Figure 20. Comparison of Cp distribution on 
the flap element 

30 

Figure 21. Convergence history of multiblock solution 
for high-lift configuration 
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high-lift configuration are presented to demonstrate the 
capability of the current solver for large-scale complex 
flow simulations, which is otherwise impractical to im- 
plement due to the large memory requirements of the 
unstructured flow solver. Future work of adding the ca- 
pability to handle the mixed elements and parallel im- 
plementation will further improve the efficiency of the 
unstructured solver by greatly reducing the computa- 
tional time and memory requirements, and thus provide 
a highly efficient and cost-effective tool to predict 
huge-scale realistic complex flows about complex con- 
figurations. 
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